Certificates of linear mixed integer infeasibility
نویسندگان
چکیده
A central result in the theory of integer optimization states that a system of linear diophantine equations Ax = b has no integral solution if and only if there exists a vector in the dual lattice, yT A integral such that yT b is fractional. We extend this result to systems that both have equations and inequalities {Ax = b, Cx ≤ d}. We show that a certificate of integral infeasibility is a linear system with rank(C) variables containing no integral point. The result also extends to the mixed integer setting.
منابع مشابه
Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming
We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the “easy” proofs – as sufficiency of a certif...
متن کاملThrowing Darts: Random Sampling Helps Tree Search when the Number of Short Certificates is Moderate
One typically proves infeasibility in satisfiability/constraint satisfaction (or optimality in integer programming) by constructing a tree certificate. However, deciding how to branch in the search tree is hard, and impacts search time drastically. We explore the power of a simple paradigm, that of throwing random darts into the assignment space and then using information gathered by that dart ...
متن کاملInfeasibility Certificates for linear matrix inequalities
Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry. Mor...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملCertificates of Optimality and Sensitivity Analysis Using Generalized Subadditive Generator Functions: a Test Study on Knapsack Problems
We introduce a family of subadditive functions called Generator Functions for mixed integer linear programs. These functions were previously defined for pure integer programs with non-negative entries by Klabjan [13]. They are feasible in the subadditive dual and we show that they are enough to achieve strong duality. Several properties of the functions are shown. We then use this class of func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 36 شماره
صفحات -
تاریخ انتشار 2008